LR S e S S . S N N L I S S R e S S N S N S e S S, ST S N S S SN S e . . S T N D

X% % X o X ok X %

Rotary encoder handler for arduino. v1.1

Copyright 2011 Ben Buxton. Licenced under the GNU GPL Version 3.
Contact: bb@cactii.net

A typical mechanical rotary encoder emits a two bit gray code

on 3 output pins. Every step in the output (often accompanied

by a physical 'click') generates a specific sequence of output
codes on the pins.

There are 3 pins used for the rotary encoding - one common and
two 'bit' pins.

The following is the typical sequence of code on the output when
moving from one step to the next:

Position Bitl Bit2

From this table, we can see that when moving from one 'click' to
the next, there are 4 changes in the output code.

- From an initial 0 - 0, Bitl goes high, Bit0O stays low.
- Then both bits are high, halfway through the step.

- Then Bitl goes low, but Bit2 stays high.

- Finally at the end of the step, both bits return to 0.

Detecting the direction is easy - the table simply goes in the other
direction (read up instead of down).

To decode this, we use a simple state machine. Every time the output
code changes, it follows state, until finally a full steps worth of
code is received (in the correct order). At the final 0-0, it returns
a value indicating a step in one direction or the other.

It's also possible to use 'half-step' mode. This just emits an event
at both the 0-0 and 1-1 positions. This might be useful for some
encoders where you want to detect all positions.

If an invalid state happens (for example we go from '0O-1' straight
to '1-0'"), the state machine resets to the start until 0-0 and the

next valid codes occur.

The biggest advantage of using a state machine over other algorithms

is that this has inherent debounce built in. Other algorithms emit spurious

output with switch bounce, but this one will simply flip between
sub-states until the bounce settles, then continue along the state
machine.

A side effect of debounce is that fast rotations can cause steps to

be skipped. By not requiring debounce, fast rotations can be accurately

measured.

Another advantage is the ability to properly handle bad state, such
as due to EMI, etc.

It is also a lot simpler than others - a static state table and less
than 10 lines of logic.



*/

#include "Arduino.h"
#include "rotary.h"

/*

* The below state table has,

* the table,

for each state

the encoder outputs are 00, 01, 10,

* in that position is the new state to set.

*/

#define

R_START 0x0

#ifdef HALF STEP

// Use the half-step state table

#define
#define
#define
#define
#define

R_CCW_BEGIN 0x1
R_CW_BEGIN 0x2
R_START M 0x3
R_CW_BEGIN M 0x4
R_CCW_BEGIN M 0x5

const unsigned char ttable[6][4] = {
// R_START (00)
{R_START VM, R CW_BEGIN,
// R_CCW_BEGIN
{R_START M | DIR CCW, R _START,
// R_CW_BEGIN
{R_START M | DIR CW, R _CW_BEGIN,
// R_START M (11)

{R_START M, R _CCW_BEGIN M,
// R_CW_BEGIN_ M
{R_START M, R _START M,
// R_CCW BEGIN M
{R_START I, R CCW BEGIN M,
}i
felse
// Use the full-step state table
#define R_CW_FINAL 0xl
#define R_CW BEGIN 0x2
#define R _CW NEXT 0x3
#define R _CCW BEGIN 0x4
#define R_CCW_ FINAL 0x5
#define R_CCW _NEXT 0x6

const unsigned char ttable[7][4] = {
// R_START

{R_START, R_CW_BEGIN, R_CCW_BEGIN,

// R_CW FINAL

{R_CW_NEXT, R_START, R CW_FINAL,
// R_CW_BEGIN

{R_CW NEXT, R CW BEGIN, R START,

// R_CW_NEXT

{R_CW _NEXT, R _CW BEGIN, R _CW_FINAL,

// R_CCW BEGIN

{R_CCW_NEXT, R_START,

// R_CCW_FINAL
{R_CCW_NEXT, R _CCW_FINAL, R_START,
// R_CCW NEXT

{R_CCW_NEXT, R CCW_FINAL,

}i
#endif

R_CCW_BEGIN,

R _CCW_BEGIN,

(row),

11,

the new state
* to set based on the next encoder output. From left to right in,

(emits a code at 00 and 11)

R _CCW_BEGIN, R_START},

R_CCW _BEGIN, R _START},

R_START,

R_CW_BEGIN M R_START},

R_START},

R_CW _BEGIN M R_START

R_START V,

R_START},
R_START
R_START},
R_START},
R_START},
R_START

R_START},

R_START

(emits a code at 00 only)

DIR CW},

DIR_CCW},

and the value

DIR CW},

DIR CCW},



/*
* Constructor. Each arg is the pin number for each encoder contact.
*/

Rotary::Rotary(char pinl, char pin2) {

// Assign variables.
pinl = pinl;
pin2 = pin2;
// Set pins to input.
pinMode(pinl, INPUT);
pinMode(pin2, INPUT);

#ifdef ENABLE PULLUPS
digitalWrite(pinl, HIGH);
digitalWrite(pin2, HIGH);

#endif

// Initialise state.
state = R_START;

unsigned char Rotary::process() {
// Grab state of input pins.
unsigned char pinstate = (digitalRead(pin2) << 1) | digitalRead(pinl);
// Determine new state from the pins and state table.
state = ttable[state & Oxf] [pinstate];
// Return emit bits, ie the generated event.
return state & 0x30;



